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I. Introduction

In this paper we discuss variations or additions to the standard wealth maximizing search
model. The first is the distinction between the search and out-of-the labor force (OLF)
states. An individual has the choice between (1) being employed at a given wage rate, (2)
being out-of-the labor force (OLF) and receiving a wage offer next period. The usual
search model consists of only states 1 and 2, i.e., an individual chooses between
employment and search, with no opportunity for non-market activities.

The second addition is to make wage and on-wage offer distributions depend on both the
state of the economy and current wage and non-wage offers. Lippman and McCall
(1976a) have already formulated a model where wage offers depend on the state of the
economy; our formulation is more general, but we do not claim any new results in this
area. Correlated wage offers, however, do appear to be new, and provide interesting
results. In particular, the reservation wage property no longer holds. Even given a
particular state of the economy and a particular non-wage offer, there need not be a wage
such that higher offers are accepted and lesser offers rejected. (Note that with correlated
wages a moderate offer may be accepted - it gives no signal about next period's offer. A
slightly higher wage, however, could be rejected because it signals a high probability of
an even better offer next period.)

The third variation is to formulate these search models in continuous time and to allow
wage offer arrivals in all states. We make the assumption that all events are
independently Poisson distributed, so that the waiting time to an arrival is exponentially
distributed. In other words wage offers arrive at random times, with the time being
Poisson distributed. This formulation has intuitive appeal, since any discrete time
formulation introduces arbitrary time units and it has the advantage of simplifying some
of the econometric problems.

II. The Model

We will build the model in three stages. First we introduce the out of the labor force
(OLF) state into the usual stationary search model. The distribution of new wage and
non-wage offers will be constant over time, and there will be no change in the economy
over time. This model exhibits most of the usual search model attributes; e.g., given a
particular non-wage offer there is a unique reservation wage, and the value of search is
increasing in the wage and non-wage offers. We give proofs of the existence and
uniqueness of the value function, the reservation wage, and the other properties of this
model.

In the second state we introduce non-stationarity. We take a relatively broad approach,
allowing next period’s wage and non-wage offers to depend on this period’s offers, and
on this and next period’s state of the economy. Many of the properties of the stationary
search model do not carry through. We discuss properties of this model, but put the
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proofs of our properties in an appendix. The outline of the proofs are the same as for the
stationary case, but technicalities make the non-stationarity case more difficult.

The third stage is to transform everything to continuous time, where offers arrive at
random, independent, Poisson-distributed times. In addition we relax the constraint that
wage offers only arrive in the search state. This is not a trivial change; in particular it
opens the possibility of testing the existence of a search state separate from the
employment and OLF states. The continuous time formulation is more tractable
econometrically as well as being more realistic.

A. The Three State, Stationary Model

Individuals live forever and can be in one of three states:
1) Employed, receiving a known wage  w  per period until (voluntary) separation.
2) Out of the labor force (OLF), pursuing non-market activities with monetary

remuneration of known  n  this period, and random  N  in the future.
3) Unemployed, paying a search cost of  c  this period to receive a random wage

offer  W  new period.
Time is split into discrete units (of a month, say), and only one state, wage offer, or non-
wage offer is allowed each period. All wage offers are known at the beginning of the
period, any decision is made at the beginning of the period, any decision is made at the
beginning, and money is earned or paid at the beginning of the period. A new non-wage
offer  N  is received each period, but a new wage offer is received only after paying the
search cost  c . When employed, a worker receives a fixed, known wage  w  per period
until he quits. A worker is allowed to switch from state 1 to 2 or 3, from 3 to 1 or 2, and
from 2 to 3. (It will turn out that in the stationary case a worker will never quit to start
searching, i.e., will never go from 1 to 3 directly, but he may go OLF for one period and
then start searching, i.e., may go 1 to 2, and then 2 to 3.) The distribution of next period’s
wage offer,  W , is  F(x) , and the distribution of next period’s non-wage offer,  N , is
G(x) ; both  F(x)  and  G(x)  are known and unchanging.

We set up the problem by hypothesizing that there exists a continuous, bounded function
of the current wage and non-wage offers,  V(w,n) , that is the current value of the
maximized expected lifetime earnings. This seems like an impossible problem, but using
Bellman's principle we can make it simple. Denote the value of this period's maximized
earnings as  V(w,n) ; then  βV(w,n)  is the value (discounted at  β=1/(1+r) ) of receiving
the same wage,  w , next period and the new non-wage offer  N . In other words
βV(w,N)  is the value next period when employed this period. Similarly  βV(W,N)  is
next period's value when searching next period. Next period's value when OLF this
period is  βV(0,N) , because having no job is the same as a job with zero wage. Note that
βV(w,N) ,  βV(0,N) ,  βV(W,N)  are all random variables; they depend on the random
variables  N ,  W . To get the expected value of each state we must add this period's
return, and take the expectation over  N  and  W , next period's random draws for non-
wage and wage offers. Formally, the values of the three states are:
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In other words, the value of being in a particular state is this period's return plus the value
of proceeding optimally tomorrow. The optimal value today will be the value of being in
the best state. Mathematically, this says that  V(w,n)  must satisfy the following equation:
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It is shown in the appendix that (1) has a unique solution within the class of continuous
functions.

Having constructed our model, which is summarized by equation (1) above, we can
proceed to discuss some of its properties. The three-state model is much the same as the
standard search model. In particular the value function,  V(w,n) , is non-decreasing and
convex in both its arguments. For a given value of  n , i.e., a particular non-wage draw,
there is a unique reservation wage offer,  w*(n) . Similarly for a given value of  w , there
is a unique reservation non-wage offer,  n*(w) . In addition both  w*(n)  and  n*(w)  are
increasing in their arguments. All of this is a natural extension of the properties of
standard two state models. For completeness, we will show how to prove these assertions.

First, we must reinterpret the right side of equation (1) as an operation  T  on the function
v :

(2) ( ) [ ] [ ] [ ]{ }),(,),0(,),(max),( NWEvcNEvnNwEvwnwTv βββ +−++=   .
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The function  v(w,n)  need not satisfy the equality in (1). In the appendix, however, we
show that starting from any  v0  and applying  T  successively will lead to the  V(w,n)
which solves (1). In other words,

(3) ( ) ),(lim),( 0 nwvTnwV t

t ∞→
= for any allowable   v0(w,n)

where

( ) ( ) ),(),( 102 nwTvnwvT = , ( ) ),(),( 01 nwTvnwv ≡

( ) ( ) ),(),( 203 nwTvnwvT = , ( ) ),(),( 1 nwTvnwvn ≡

…

( ) ( ) ),(),(01 nwTvnwvT nn =+ , ( ) ),(),( 12 nwTvnwv n−≡

Properties

a)  V(w,n)  is increasing in  (w,n) .

To see this, note that (3) tells us that starting from any allowable  v0(w,n)  leads to
V(w,n) . If we start with a non-decreasing  v0(w,n)  and if the operation  T  preservers
non-decreasingness, then the limit will also be non-decreasing. If  vn-1(w,n)  is non-
decreasing in  (w,n) , then

( ) ),(),( 12 nwTvnwv n−≡

is obviously non-decreasing in  (w,n) , from the definition of  T  in equation (2). Since
v0(w,n)≡0  is a good starting function, and is obviously non-decreasing in  (w,n) ,  V(w,n)
is non-decreasing in  (w,n) .

b)  V(w,n)  is convex in  (w,n) .

A function  f(x)  is convex when

 f(αx1 + (1-α)x2) ≤ αf(x1) + (1-α)f(x2) for all  0 ≤ α ≤ 1  .

The paragraph above implies that we need only show that a convex  vn(w,n)  gives a
convex  vn+1(w,n)  and that an allowable  v0(w,n)  is convex. I.e. we must show

(4)  vn(αw1 + (1-α)w2, αn1 + (1-α)n2) ≤ αvn (w1, n1) + (1-α)vn(w2, n2)

implies
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(5)  (Tvn)(αw1 + (1-α)w2, αn1 + (1-α)n2) ≤ α(Tvn )(w1, n1) + (1-α)(Tvn)(w2, n2)

for all  0 ≤ α ≤ 1 . Write

21 )1( www αα −+=

21 )1( nnn αα −+=

and note that (4) also says (setting  w1=w2=w , then  n1=n2=n )

 vn(αw1 + (1-α)w2, n) ≤ αvn (w1, n) + (1-α)vn(w2, n)

 vn(w, αn1 + (1-α)n2) ≤ αvn (w, n1) + (1-α)vn(w, n2)  .
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The first inequality holds because  vn(w,n)  is convex in  w . The second holds because
the maximum of convex functions is itself convex.

c) For given values of  n  or  w , there are unique reservation wage and non-wage
offers,  w*(n)  and  n*(w) , respectively.

This is obvious from looking at equation (1) above. The reservation wage is defined to be
that wage below which all offers are rejected, and above which all offers are accepted.
Setting the value of a job equal to the value of searching, we get an equation defining the
reservation wage for  n=0 ,  w*(0) :

(6)  w+βEV(w,N)=-c+βEV(W,N)   .
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No job will be accepted for  W<w*(0)  since searching has more value. Similarly we can
get the reservation non-wage offer for  w=0 ,  n*(0) :

(7)  n+βEV(0,N)=-c+βEV(W,N)   .

Since  EV(0,N)  and  EV(W,N)  are constants, and  EV(w,N)  is increasing in  w  but is
not a function of  n , (6) and (7) define unique values. (There is one small caveat: the
value of searching might be so low or the cost so high that any job is better than
searching. In other words equations (6) and (7) may not have any solutions. If they do,
however, they are unique.) For both  w  and  n  above  w*(0)  and  n*(0) , the choice is
between taking a job and being out of the labor force (OLF). The reservation wage and
non-wage offers will depend on the given value of  n  or  w .  w*(n)  and  n*(w)  are both
given by setting the value of a job equal to the value of OLF:

(8)  w+βEV(w,N)=n+βEV(0,N) , w>w*(0) ,  n>n*(0)   .

Once again, if this has a solution, it is unique for  w*(n)  given  n , or for  n*(w)  given  w
.

B. Three State, Non-Stationary Model

The model is essentially the same as in the stationary case, except that the random
variables  W  and  N  are now functions of the current wage and non-wage offers. In
addition, a new  z  variable is introduced to represent the state of the economy. This
variable changes from period to period, and it also affects the random variables  W  and
N . A higher value of  z  this period means the random wage and non-wage offers  W  and
N  are better, in that there is a higher probability of receiving a higher offer. A high  z
represents an active economy which has many high paying jobs, and also many lucrative
opportunities out of the labor force. At this level of generality we don’t specify exactly
how  z  affects  W  and  N , only that a higher  z  corresponds to more, better, offers. We
also introduce the random variable  Z , which is next period’s state of the economy.  Z  is
itself a function of  z , this period’s state of the economy, but it does not depend on the
wage or non-wage offers. (We are taking a partial equilibrium approach to this model. All
random variable,  Z ,  W , and  N , are exogenous to the decision process. In a full
equilibrium model we would take into account the demand for labor and non-labor
services, as well as individuals’ supply decisions.)

To state things formally,  Z, W, N  are independent random functions over the real line ℜ
and a probability space  (Ω,ℑ,P) . In other words for real  ω∈Ω

 Z=Z(z,ω)

 W=W(w,z,ω)

 N=N(n,z,ω)   .
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The arguments  z ,  w ,  n  are restricted to lie in some finite interval  [0,M] , and  Z(⋅) ,
W(⋅) ,  N(⋅)  map into the same interval  [0,M] . This keeps the wage offers from ever
becoming infinite or negative. To keep the interpretation of  z  as a measure of the
strength of the economy we require that  W(w,z,ω)  and  N(n,z,ω)  are non-decreasing in
z  for each  ω ,  w  and  n . This insures that the probability of receiving a wage (or non-
wage) offer at least as high as some  x  is non-decreasing:

 P[ω : W(w,z,ω) ≥ x] = 1 - Fw,z(x)

is non-decreasing in  z , for a given  w . ( Fw,z(x)  is the distribution function for  W  given
particular values of  w  and  z .) Since wage offers are non-negative this means the mean
of  W(⋅) , for a given  w , will increase with  z :

��
ΩΩ

≤ )(),.()(),.( 21 ωωωω dPzwWdPzwW

for  z1 ≤ z2 . What happens to higher moments about the mean depends on the particular
function  W(w,z,ω) .

To maintain non-decreasingness of the value in the wage and non-wage offers we must
have that  W(w,z,ω)  and  N(n,z,ω)  are non-decreasing in  w  and  n , respectively. This
has intuitive appeal if wages reflect productivity, and current wage offers serve as signals
of productivity. This stretches our simple model somewhat, but does give some vague
justification for assuming non-decreasingness of  W(w,z,ω)  and  N(n,z,ω) . Note,
however, that the existence of an optimal policy and of the value function doesn’t require
this assumption. We make it because it insures increasingness of the value function in  w
and  n .

The value function for this model will be a function of  w ,  n ,  z :  V = V(w,n,z) . The
values of the three states are:

1) Being employed: ( )�
Ω

+=+ )(),(),,,(,),,( ωωωββ dPzZznNwVwZNwEVw

2) Being OLF: ( )�
Ω

+=+ )(),(),,,(,0),,0( ωωωββ dPzZznNVnZNEVn

3) Being unemployed (searching):
( )�

Ω

+−=+− )(),(),,,(),,,(),,( ωωωωββ dPzZznNzwWVcZNWEVc

The value of receiving a wage and non-wage offer of  (w,n)  when the state of the
economy is  z  is the maximum of the three values:

(9) [ ] [ ] [ ]{ }),,(,),,0(,),,(max),,( ZNWEVcZNEVnZNwEVwznwV βββ +−++=  .

where
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 Fw,z(u) ,  Gn,z(x) ,  Hz(y)  are the distribution functions of  W(w,z,ω) ,  N(n,z,ω) , and
Z(z,ω)  for given  (w,n,z) .

In the same way that we could prove the existence and uniqueness of a solution to
equation (1) for the stationary case, we can prove the existence and uniqueness of a
solution to (9) within the class of continuous functions. The proof of this, together with
proof of convexity and increasingness of the solution to (9), is found in the appendix.

Taking the existence and uniqueness of  V(w,n,z)  as given we can easily see that the
reservation wage property of simple search models does not hold. Look, for example, at
the condition for indifference between taking a job and continuing search (for a given  n
):

(10) ( ) ( )),(),,,(),,,(),(),,,(, ωωωβωωβ zZznNzwWEVczZznNwEVw +−=+  .

Both sides are increasing functions of  w , even after we take the expectation. Thus we
don’t have any guarantee that (10) has a unique solution. It could happen that there are
three solutions, so that all wages below  w1  are rejected, those between  w1  and  w2
accepted, those between  w2  and  w3  rejected, and those above  w3  accepted. This is a
direct result of correlated wage offers. This situation might result if low wages (below  w2
) all had significantly higher probability of getting even better offers. Then any offer
below  w2  would lead to normal search model behavior, with some reservation wage  w1
. Any offer above  w2  might lead a worker to stay out of the market in expectation of a
yet better offer. Thus we get a set of wages, between  w2  and  w3 , which are rejected.

The same kind of argument holds for non-wage offers. There is no reservation non-wage
offer as long as we allow correlated non-wage offers.

We can also look at the employment, OLF, search choice as a function of  z , for given  w
and  n . There is no one value of  z  at which a worker is indifferent between work and
search, search and OLF, and work and OLF. In the same way that correlation in wage
offers may make it worthwhile to sit out in the expectation of higher offers next period,
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certain states of the economy may signal a high probability of even better times next
period. This may lead to acceptance of low wage offers for low  z , rejection of low offers
for intermediate  z , and then acceptance of the same low offers for yet higher  z . In the
intermediate range workers may sit out in the expectation of a better state of the economy
and thus better offer distributions next period.

By dropping the correlation in wage and non-wage offers we get something that looks
like the Lippman and McCall (1976a) model. The functional equation for an infinite lived
individual is

(11) [ ] [ ] [ ]{ }),,(,),,0(,),,(max),,( ZNWEVcZNEVnZNwEVwznwV βββ +−++=

 W = W(z,ω)

 N = N(z,ω)

 Z = Z(z,ω)

The equation corresponding to (1), which defines the points of indifference between
working and searching, is now

(12) ( ) ( )),(),,(),,(),(),,(, ωωωβωωβ zZzNzWEVczZzNwEVw +−=+

which defines a unique  w . Call this  w*(0,z) , and define  n*(0,z)  by a corresponding
equation. Then for both  w>w*(0,z)  and  n>n*(0,z)  and for given  z , we can define
w*(n,z)  and  n*(w,z)  implicitly by

(13) ( ) ( )),(),,(,0),(),,(, ωωβωωβ zZzNEVnzZzNwEVw +=+  .

These are all uniquely determined, but  w*(n,z)  and  n*(w,z)  are not increasing in  z .
Because of correlation in states of the economy and dependence on the offer distributions
on  z , both sides of (12) and (13) are increasing in  z . A low state of the economy might
have lower reservation wage than an intermediate state, but the intermediate state might
have a higher reservation wage than a high state.

C. Three State Model – Continuous Time

To begin the continuous time model we will return to our stationary assumption:  W  and
N  are random variables which don’t change over time and don’t depend on any other
variables. Time is continuous, and wage offers can arrive at any time. The offers
themselves are discrete and arrive at random times. We will assume that the offer arrival
times are Poisson distributed, so that the time until a next arrival does not depend on the
wait since last arrival.
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One major change from the discrete time model (although this could have been
incorporated in the discrete time model) is that wage offers will be allowed to arrive in all
states. In other words an individual in the job state will receive offers without having to
quit. What will distinguish the job, OLF, and search states is the rate of arrival of offers.
The search state will presumably have the highest rate of arrival of new job offers, with
job and OLF lower. The arrival rate for non-wage offers we will denote by  µ , and for
wage offers in the employment, out of the labor force, and search states by  λ1 ,  λ2 , and
λ3 .

To derive the functional equation for the value, we will first derive functional equations
for each of the states separately. The values for job, OLF, and search we will denote by
V1(w) ,  V2(w) , and  V3 . To calculate the value, we need to know two things. First, when
does a new offer arrive, and second, what kind of offer is it. For the job state, two kinds
of offers, non-wage and wage, arrive. The non-wage offers arrive at rate  µ , the wage
offers are rate  λ1 . The time of arrival of some offer is the minimum of the time of arrival
of either non-wage or wage offers, and so arrives at rate  µ+λ1 . In other words, since the
density of arrival times for non-wage offers is

 µe-µt

and for wage offers is

 λ1e-λ1t  ,

the density of some arrival is

 (µ+λ1)e-(µ+λ1)t  .

We also know the density of non-wage offers conditional on the non-wage offering first.
Calling  tµ  the time of arrival of a non-wage offer, and  t1  the time of arrival of a wage
offer, the conditional distribution is

[ ] [ ] tt
t eettttPtF 11 and )( 1

λµ
µµ

−−−=>≤=   .

The conditional density is

(14) t
t etf )( 1)( λµµ

µ

+−=   .

Similarly, the density for  t , conditional that the wage offer arrives first, is

(15) te )(
1

1λµλ +−   .

In the job state, an individual continues in the state until a new offer arrives. At that time
he can choose to switch to the OLF state (if a non-wage offer arrives) or switch to a better
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job (if a wage offer arrives). We implicitly assume that workers are not allowed to switch
to a better state except at arrivals of new offers. For example, a worker who happens to
be at a low paying job might desire to switch to search, but we will not allow him to do
so except when new offers arrive. This will not affect the value of the job state when the
job state is optimal, and that is all we are interested in. One minor problem arises when
comparing the job and OLF states at zero wage and non-wage levels. It is possible, for
certain sets of parameters, for a zero-wage job to be of higher value than a zero, or even
slightly positive, non-wage offer. We will allow individuals to switch into the zero-wage
job, although we will generally pick parameters so the situation doesn’t arise ( λ1≤λ2 ).

a) Being paid wage  w  until time  τ , then receiving a new wage offer. The worker can
either continue at  w , take the new  W  (if it is higher) or switch to search. This is all
conditional on the wage offer arriving first.

( )[ ] [ ] ( )[ ]3131
0

,),max(max1,),max(max VwWVee
r
wVwWVewdue rrrru τττ

τ
−−−− +−=+�

b) Being paid wage  w  until time  τ , then receiving a new non-wage offer. The worker
can then either continue working (and receive  V1(w) ) or switch to the OLF state
(and receive  V2(N) ). This is conditional on the non-wage offer arriving first.

[ ] [ ] [ ]321321
0

),(),(max1),(),(max VNVwVee
r
wVNVwVewdue rrrru τττ

τ
−−−− +−=+�

Using the conditional densities for wage and non-wage offers arriving first, and taking
expectations separately over  τ ,  W , and  N  (all are independent) we get
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∞
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(16)  ( )[ ] [ ]{ }321311
1

1 ),(),(max,),max(max1)( VNVwVEVwWVEw
r

wV µλ
λµ

++
++

=  .

For the OLF state, the choices facing an individual are

a) Receiving non-wage benefits  n  until  τ , then receiving a new non-wage offer,  N .
The individual can then choose between search,  V3 , and continuing in the OLF state,
V2(N) . This is conditional on the non-wage offer arriving first.
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[ ] [ ] [ ])0(,),(max1)0(,),(max 132132
0

VVNVee
r
nVVNVendue rrrru τττ

τ
−−−− +−=+�

b) Receiving non-wage benefits  n  until  τ , then receiving a new wage offer. The choice
is between continuing in OLF  V2(N) , switching to the job,  V1(W) , or switching to
search,  V3 . This is conditional on the wage offer arriving first.

[ ] [ ] [ ]321321
0

),(),(max1),(),(max VnVWVee
r
wVnVWVendue rrrru τττ

τ
−−−− +−=+�

Using the conditional densities we get
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(17)  [ ] [ ]{ }3212132
2

2 ),(),(max)0(,),(max1)( VnVWVEVVNVEn
r

nV λµ
λµ

++
++

=  .

For the search state, the choices facing an individual are

a) Paying the cost  c  per unit time until  τ , then receiving a new non-wage offer,  N .
The individual can then choose between search,  V3 , and switching to OLF,  V2(N) .
This is conditional on the non-wage offer arriving first.

[ ] [ ] [ ])0(,),(max1)0(,),(max 132132
0

VVNVee
r
cVVNVeduce rrrru τττ

τ
−−−− +−−=+− �

b) Paying  c  per unit time until  τ , then receiving a new wage offer  W . The individual
can then choose between search,  V3 , and the job,  V1(W) . This is conditional on the
wage offer arriving first.

[ ] [ ] [ ]3131
0

),(max1),(max VWVee
r
cVWVeduec rrrru τττ

τ
−−−− +−−=+− �

Using the conditional densities for arrival of the non-wage and wage offers first, we get
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Putting all three values together, we can say that the value to the individual of this search
problem is

(19)
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Note, however, that when the job is optimal,

(20) ( )[ ]),()0),,max(1)()0,(),( 1
1

1 NwEVwWEVw
r

wVwVnwV µλ
λµ

++
++

===  .

Similarly, when OLF is optimal,

(21) [ ]),(),0(1)(),0(),( 2
2

2 nWEVNEVn
r

nVnVnwV λµ
λµ

++
++

===

and when search is optimal

(22) [ ])0,(),0(1)0,0(),( 3
3

2 WEVNEVc
r

VVnwV λµ
λµ

++−
++

===   .

Thus  V(w,n)  can be expressed as
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Equation (23) can be put in a slightly different form by rearranging equations (20)-22).
Start with equation (20) and add  (λ2+λ3)V(w,0)/(µ+λ1+r)  to both sides:

( ) ( )[ ])0,(),(0),,max(1

)0,()0,(

321
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wVwWEVNwEVw
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wV λλλµ
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Performing similar algebra on (21) and (22), gives

(24)
( ) ( )[ ]
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VWEVNEVc
nVnWEVNEVn

wVwWEVNwEVw

r
nwV

λλλµ
λλλµ

λλλµ

η

where  η≡µ+λ1+λ2+λ3 .

Equation (24) can be derived in one step by an alternative method. In the job state, the
following four events, with their associated rate of arrivals, could occur:

a) A new non-job (OLF) offer,  N , arrives, with rate  µ .
b) A new job offer,  W , arrives, with rate  λ1 .
c) A new job offer for the OLF state arrives, with rate  λ2 . Since we are in the state;

i.e., the same wage  w .
d) A new job offer for the search state arrives, with rate  λ3 . Since we are in the job

state, this is no change in the state; i.e., the same wage  w .

Calling the time of first arrival  τ , the conditional densities for the events a), b), c), d) to
occur first are (see equation (14))

 µe-ητ
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 λ1e-ητ

 λ2e-ητ

 λ3e-ητ

where  η≡µ+λ1+λ2+λ3 . The expected value for each event is, conditional on it occurring
first

a) [ ] ),(1 NwEVee
r
w rr ττ −− +−

b) [ ] ( )0),,max(1 wWEVee
r
w rr ττ −− +−

c) [ ] )0,(1 wVee
r
w rr ττ −− +−

d) [ ] )0,(1 wVee
r
w rr ττ −− +−

(We are implicitly assuming that once a worker takes a job he cannot go back to the OLF
state. This won’t matter if the job is the optimal state since a worker would not go to
OLF, and if the job is not optimal we don’t really care what the value of the job state is.)
Using the conditional densities above to take the expectation over  τ , we get for the job
state

( ) ( )[ ])0,()0),,max(),(1
321 wVwWEVNwEVw

r
λλλµ

η
++++

+
  .

Similarly for the OLF and search states we get
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The existence and uniqueness of  V(w,n)  is established in the appendix, as is the
increasingness in  (w,n) . It should be clear that the model summarized by equation (24)
has a reservation wage for given  n , and a reservation non-wage offer for given  w .

We can introduce non-voluntary lay-offs in the job state by introducing layoffs that occur
at random, Poisson distributed times. Following an argument analogous to that above, we
get the expected value of the three states as:

1) Job:

( ) ( )[ ]),0()0,(0),,max(),(1
321 nVwVwWEVNwEVw

r
δλλλµ

δη
+++++

++
  .

2) OLF:  ( )[ ]),0(),(),0(1
312 nVnWEVNEVn

r
δλλλµ

δη
+++++

++

3) Search:  ( )[ ]),0(),(),0(1
213 nVnWEVNEVc

r
δλλλµ

δη
+++++−

++

and the value function as the maximum of the three. Note that because of the layoffs,
where a worker is required to fall back on the non-wage offer,  n  enters into the job state
in a non-trivial way. This also means that there might be no unique reservation non-wage
offer. For a given  n , however, there will still be a unique reservation wage offer.

Just as the discrete time model can be extended by adding correlated wage offers and a
state of the economy variable, the continuous time model can be extended. It is largely,
however, a matter of notation, since we just make  W  and  N  random functions which
depend on the current  w  and  n . Formally, let a probability space  (Ω,ℑ,P)  be given and

 W = W(w,z,ω) : [0,M] × [0,M] × Ω → [0,M]

 N = N(n,z,ω) : [0,M] × [0,M] × Ω → [0,M]

 Z = Z(z,ω) : [0,M] × Ω → [0,M]   .

We will assume that  W(⋅) ,  N(⋅) ,  Z(⋅)  are all increasing in  w ,  n ,  z  for each  ω∈Ω .
New wage and non-wage offers arrivals are Poisson as before (wage offers with means
λ1 ,  λ2 ,  λ3  in the employment, OLF, and search state, non-wage offers with mean  µ ).
New states of the economy arrive at rate  ν . The functional fixed point equation is

(25)
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APPENDIX A

We prove assertions in this appendix to keep the text uncluttered and to allow more
rigorous proofs. In some cases we have repeated proofs from the text for completeness.
The methods used here are simple and well known to mathematicians, but because they
have not been widely used in the search literature we have laid out some of the proofs in
more detail than is absolutely necessary. The concept we use, fixed point functional
equations, is not too complex and the mechanics of proving existence, uniqueness, and
other properties is simple.

II. A. Three State Stationary Model

Preliminaries

The basic equation for this model is (1), reproduced here as equation (A.1).

(A.1) [ ] [ ] [ ]{ }),(,),0(,),(max),( NWEVcNEVnNwEVwnwV βββ +−++=

�
∞

=
0

)(),(),( xdGxwVNwEV

�
∞

=
0

)(),0(),0( xdGxVNEV

� �
∞

=

∞

=

=
0 0

)()(),(),(
y x

xdGydFxyVNWEV

Equation (A.1) is the basic equation of our model. The problem is to prove that there is
actually function  V(w,n)  for which (A.1) holds; so far we have only assumed such a
function exists. To tackle this problem we will look at (A.1) in a slightly different light.
For any continuous, bounded function  v(⋅,⋅) ; define the operation  T  by

(A.2) ( ) [ ] [ ] [ ]{ }),(,),0(,),(max),( NWEvcNEvnNwEvwnwTv βββ +−++≡   .
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)(),0(),0( xdGxvNEv
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First, we show that for any  v0(⋅,⋅) ,  (Tv)(⋅,⋅)  is a new function,  v1(⋅,⋅) , which is also
continuous and bounded, given that the range of  W ,  N  are bounded, i.e., that we don’t
allow infinite wage and non-wage offers. This leads to

Assumption 1 – The values of  W ,  N , the random wage and non-wage draws, are
bounded between zero and  M<∞ . I.e.  0≤W≤M ,  0≤N≤M ,  M<∞ .

 T  is an operator from the space of continuous functions back to the same space. Thus
equation (A.1) can also be written as a fixed point functional equation

(A.3)  v(w,n) = (Tv)(w,n)

In essence this is no more complicated than an implicit function (say  x = ex + 1 ), which
may have zero, one, or many solutions. The real difference, and this turns out to be
relatively unimportant, is that  ex + 1  takes real numbers,  x , and maps them back into
real numbers, while the operator  T  takes functions and maps them back into functions.
By defining the appropriate measure of distance between the two functions  v0(.,.)  and
v1(.,.) , we can forget that  v0  and  v1  are functions and treat them almost as if they were
points in space. For continuous functions the correct measure of distance is called the
sup-norm, the supremum of the absolute of the difference between the function values:

(A.4) ( ) ),(),(sup, 10

0
0

1010 yxvyxvvvvvd
My
Mx

−=−=
≤≤
≤≤

  .

Under this norm, the space of continuous, bounded function over the finite range  [0,M]
is closed (all Cauchy sequences converge), and we can use Brauer’s fixed point theorem.

Brauer’s fixed point theorem:

(A.5) ( ) ( )1010 ,, vvdTvTvd β≤ for any  v0 ,  v1 ,  0<β<1

implies the functional fixed point equation  v=Tv  has a unique solution, and the solution
is

(A.6) 0* lim vTv t

t ∞→
= for any  v0

where  T2v=T(Tv) ,  T3v=T(T2v) , etc. (See, e.g., Wouk (1979).)

The method just outlined has a very simple intuitive and economic interpretation. We can
use the operator  T  defined in (A.2) to generate a sequence of value functions  v0, v1, v2,
…, vN , where  vi+1 = Tvi  and  v0(w,n) = 0 .  v0  has the economic interpretation of the
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value of not being allowed any choice, in short of being dead.  v1  is then the value of
having one period left to live,  v2  the value of two more periods, and so on up to  vN

being the value of living for  N  periods. Equation (A.5) gives a condition under which
the sequence  v0, v1, …  will converge to some unique  v*  which satisfies (A.3). (It is
actually stronger, since it says that a sequence starting from any initial  v0 , not just
v0(w,n)≡0 , will converge.) This procedure is called backwards induction, and is very
useful for proving specific properties of the value function.

For example, we can assert: Equation (A.3) (or equation (A.1)) has a unique solution
within the class of continuous functions  v : [0,M] × [0,M] → ℜ .

We use Blackwell’s conditions (from Blackwell (1965)). Although Blackwell limits
himself to continuous bounded functions, his method does not require this. For
completeness we will reproduce his proof here. His theorem 5 (paraphrased) is

If an operator,  T , from the space of continuous functions over a finite region of  ℜ2 ,
[0,M] × [0,M] , to the real line  ℜ , satisfies

a) monoticity:  v0 ≤ v1 � T(v0) ≤ T(v0)
b)  T(v0 +k) = T(v0) + βk ,  0 ≤ β ≤ 1 ,  k  constant,

then  T  is a contraction mapping with

 d(Tv0,Tv1) = ||Tv0 – Tv1|| ≤ β|| v0 – v1||   .

PROOF:

 v0(w,n) ≤ v1(w,n) + || v0 – v1||  by the definition of the sup-norm.

 (Tv0)(w,n) ≤ (Tv1)(w,n) + β|| v0 – v1||  by conditions a) and b)

 v1(w,n) ≤ v0(w,n) + || v0 – v1||  by definition

 (Tv1)(w,n) ≤ (Tv0)(w,n) + β|| v0 – v1||  by a) and b)

Using these two inequalities implies

 |(Tv0)(w,n) – (Tv1)(w,n)| ≤ β|| v0 – v1||  and so

 ||Tv0 – Tv1|| ≤ β||v0 – v1||  .

To allow for greater generality later, we will allow more general random variables than
just  W ,  N . In other words, we will prove the existence and uniqueness of a function
which satisfies
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[ ] [ ] [ ]{ })(,)(,)(max),( 321 XEVcXEVnXEVwnwV βββ +−++=   ,

where the vector valued random variables  X1 ,  X2 ,  X3  are restricted to the rectangle
[0,M] × [0.M] . In our case

 X1 = (w,N)

 X2 = (0,N)

 X3 = (W,N)   .

Another possibility might be

�
�
�

−
=

)1(y probabilit with ),0(
y probabilit with ),(

2 pN
pNW

X

with  X1  and  X3  remaining the same. This would correspond to receiving wage offers in
the OLF state, but only with a probability  p .

To use Blackwell’s conditions, we just have to show a) and b) above. Monotonicity is
simple, since  v0(w,n) ≤ v1(w,n)  implies

( ) [ ] [ ] [ ]{ }
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Showing  T(v+k)(w,n) = (Tv)(w,n) + βk ,  k  constant, is simple, since

( ) [ ] [ ] [ ]{ }
[ ] [ ] [ ]{ }

( ) knwTv
kXEvcXEvnXEvw

kXEvckXEvnkXEvwnwkTv

β
ββββ
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),(
)(,)(,)(max

)(,)(,)(max),(

321

321

Thus T is a contraction mapping. QED

Unbounded Support

We have assumed that both  W  and  N  are restricted to the interval  [0,M] , so that each
has bounded support. This has obvious disadvantages when turning to empirical
applications; distributions commonly used in empirical applications have unbounded
support. The reason we have not extended our analysis to unbounded  W  and  N  is a
seemingly technical annoyance. The space of continuous functions over a finite interval
is closed under the sup-norm used above. Extending the analysis to  V(w,n)  where  (w,n)
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range over an unbounded interval does not seem to be allowed. Our first attempt at
circumventing this problem was to look at the space of integrable functions, and using the
L1  or  L2  norm. This does not appear to work, however, since we have found an example
where

)()(sup)()(sup 21

],0[

21

],0[
wvwvwTvwTv

MwMw
−≤−

∈∈
β

but

�� −>− )()()()()()( 2121 wdFwvwvwdFwTvwTv β

where

( ) [ ] [ ]{ })(,)(max),( 111 WEvcwvwnwTv ββ +−+≡   .

In other words we have found functions such that the distances between  Tv1  and  Tv2  is
less than the distance between  v1  and  v2  when measured in the sup-norm but is not
when measured in the  L1  norm. (The example is to use the interval [0,2], with  W
uniformly distributed. Pick

 v1(w) = 0

�
�

�
�

�

∈−
∈

=
]2,1(    1
]1,0[          0

)(2

ww
w

wv
β

 c = 1/8

Then

2539.0)()()(
2

0

21 =−� wdFwTvwTv

25.0)()()(
2

0

21 =−� wdFwvwvβ  . )

We have found a trick that, while not very elegant, seems to work. Instead of treating the
value function as a function of  (w,n)  and the random variables  (W,N)  (with
distributions  F(x) ,  G(y) ), treat it as a function of an underlying probability space. Use
the space  (Ω,ℑ,P)  = ((0,1), Borel sets of (0,1), Lebesgue measure). Make  W,N  random
variables of  ω∈Ω . Since any distribution  F(x)  on  ℜ1  can be represented by a random
variable on  (Ω,ℑ,P) , we can represent any random variable  W  with distribution  F(x)
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by a random function  W(ω) . Thus we can think of  w(⋅)  and  n(⋅)  as functions of  t1
and  t2 ,  w(t1) ,  n(t1) . We now rewrite (A.1) as

( ) ( )[ ] ( ) ( )[ ]
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ddVc

dtVtndtVtw
ttV

where tt any  1 = , for which  w(t1) = 0 . Now  t1 ∈ (0,1) ,  t2 ∈ (0,1) , so  V(t1,t2)  is a
function over  (0,1)×(0,1) . (There is one small problem –  w(t1)  and  n(t2)  must be
continuous function of  t1  and  t2  so that  V(t1,t2)  will be continuous.) The analysis of
(A.1) or (A.3) still holds. The proof holds with only change of notation (writing  w(t1)
instead of  w ).

The condition that  V(t1,t2)  be defined  (<∞) , at least for values  (t1,t2) : w(t1)<∞,
n(t2)<∞, is that  w(t1)  and  n(t2)  are both integrable. Given a  v0(t1,t2)  that is integrable,

(A.4) ( ) ∞<� �
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0
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then  (Tv0)(t1,t2)  is integrable, and  (Tv1)(t1,t2)<∞ ∀(t1,t2)  such that  w(t1)<∞ ,  n(t2)<∞ .

Proof:
Given the condition (A.4),  �v0(t1,ω2)dω2<∞ ∀t1 s.t. w(t1)<∞   �v0(ω1,ω2)dω1dω2<∞ . So
when  w(t1)<∞ ,  n(t1)<∞ ,  (Tv0)(t1,t2)<∞ . In addition
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where  A0 ,  B0 ,  C0  are the  (t1,t2)  values for which job, OLF, search are best. ( A0  is
defined above. [sic]) Since all of  w(⋅) ,  n(⋅) ,  v0(⋅,⋅)  are integrable, each term  <∞ , and
(Tv0)(t1,t2)  is integrable.

A good starting value for  v0(t1,t2)  is  v0(t1,t2)≡0 , which satisfies (A.4). By Brauer’s fixed
point theorem,

( ) ( )( )21
0

21
* ,lim, ttvTttv i

i ∞→
=

will satisfy (A.4), and will have  v*(t1,t2)<∞  for  w(t1)<∞ ,  n(t2)<∞ . QED

II. B. Three State Non-Stationary Model

The equation of interest is (9), reproduced as equation (A.15)

(A.15) [ ] [ ] [ ]{ }),,(,),,0(,),,(max),,( ZNWEVcZNEVnZNwEVwznwV βββ +−++=

where

( )�
Ω

= )(),(),,,(,),,( ωωω dPzZznNwVZNwEV

( )�
Ω

= )(),(),,,(),,,(),,( ωωωω dPzZznNzwWVZNWEV   .

We want to find if the functional fixed point equation,

(A.16)  v(w,n,z) = (Tv)(w,n,z)

where  T  is the operation on the right hand side of (A.15), has a unique fixed point,
v*(w,n,z) . Our claim is that

Equation (A.16) (or equation (A.15)) has a unique solution within the class of
continuous functions  v : [0,M] × [0,M] × [0,M] → ℜ .

Proof:
We assume that the random function  W ,  N ,  Z  are all bounded by 0 below and  M<∞
above. From the definition of  T , it is clear that if we start with a continuous function, the
continuity will be preserved. (The maximum of continuous functions is also continuous.)
The main item we must prove to show that Brauer’s fixed point theorem holds is

(A.17)  d(Tv0,Tv1) ≤ β d(v0,v1)      for  0 < β < 1 ,  any  v0, v1
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( ) ( ) ( ) ),,(),,(sup, 10

0
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0
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−=

≤≤
≤≤
≤≤

The proof of (A.17) follows much the same lines as proving (A.5) above. We define sets
A0 ,  B0 ,  C0 ,  A1 ,  B1 , and  C1  analogously to those used above. For example,

[ ] [ ]{ }{ }),,(,),,0(max),,(:),,( 000
0 ZNWEvcZNEvnZNwEvwznwA βββ +−+≤+=

Then  d(Tv0, Tv1)  can be written in the same form as (9) [sic] above. For a fixed  z , say
z* , the arguments leading from (7) to (14a) [sic] would hold, since  z  would not vary.
Thus we immediately have

( ) ( ) ),,(),,(sup),,(),,(sup *1*0
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for every  z* . Thus

( ) ( ) ),,(),,(sup),,(),,(sup 10

0
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0
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Mz
Mn
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Mz
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−≤−

≤≤
≤≤
≤≤

≤≤
≤≤
≤≤

β

In other words

 d(Tv0,Tv1) ≤ β d(v0,v1)  .

This is what we had to prove to prove Brauer’s fixed point theorem. In other words,
(A.15) or (A.17) have a unique solution. QED

II. C. Three State Model – Continuous Time

Rather than try to prove that the continuous time value function exists and is unique, we
will show that the continuous time operator is equivalent to the discrete time operator.
This result is interesting in itself for it implies that the discrete and continuous problems
are not very different, but it also allows us to use the uniqueness and existence proofs
from the discrete time case.

We start with the stationary model with involuntary layoff, i.e., the model presented in
Section II. C:

(A.18)
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where  η≡µ+λ1+λ2+λ3+δ . If we need [sic] the following definitions of vector-valued
random variables

(A.19)
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Also define  β = 1/(1+r/η)  and note that

η
β

η
ηη

1

1

111 =
+

=
+ rr

Then (A.18) can be written as

(A.20) ( ) ( ) ( )
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� += 321
1,1,1max),( XEVcXEVnXEVwnwV ββ
η

ββ
η

ββ
η

With some minor modifications this is the same equation for the discrete model, equation
(1). To see the equivalence we must note:

1)  η  depends on the time unit chosen. We could choose our time unit so that  η=1 .
2) In deriving (1) we assumed wages were paid at the beginning of a period. If it

were paid at the end,  w ,  n ,  -c  would all have been multiplied by  β .
3) Equation (1) uses the definitions of  X1 ,  X2 , X3  as
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 X1 = (w,N)

 X2 = (0,N)

 X3 = (W,N)

We could have introduced more complex wage offer structures and the proofs of
existence and uniqueness of (1) would still have stood. The proof of existence and
uniqueness of (1) in Appendix II.A above does not depend on the nature of the random
variables  X1 ,  X2 ,  X3 . The definitions (A.20) above are perfectly legitimate because
they are restricted to the region  [0,M] × [0,M] .

For the non-stationary continuous-time model the proof follows the same strategy as for
the discrete time model. We show that, for every  z*

( ) ( ) ),,(),,(sup),,(),,(sup *1*0

0
0

*1*0

0
0

znwvznwvznwTvznwTv
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β

Then immediately

 d(Tv0,Tv1) ≤ β d(v0,v1)  .
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