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CONVEXITY ADJUSTMENT FOR CONSTANT MATURITY SWAPSAND
LIBOR-IN-ARREARS BASIS SWAPS!2

INTRODUCTION

The Congtant Maturity Swap or Treasury (CMSor CMT) market islarge and active. The
difficulty of evauating the implicit convexity cost, however, makes the markets more opague
than would otherwise be the case. This note lays out a practica method for caculating the vaue
of the convexity adjusment for the linear CMS/CMT and LIBOR-in-arrears payments.

Both cMT/cMS and LIBOR-in-arrears swaps share the characterigtic that the payment on
one Sde of the swap is linear with respect to its index while the offsetting hedge is convex. The
linearity of the payment (relative to the convex hedges) imposes a cost that leads to the
"convexity adjusment” made to the linear payment. The basis of the gpproach used hereisto
1. Findfor each reset date the equivaent martingale measure (forward measure using a zero

bond as numeraire) which makesthe PV of atraded swap equd to its market value. In
practica terms, this reduces to finding the "adjusted mean™ of the rate distribution as of the
reset date. For log-normally distributed rates, there are approximations which make this
fodt.

2. Thesame forward measure is then used to caculate the PV of the cMS/CMT swap or the
LIBOR-in-arrears payment (which is not actively traded). This PV incorporatesthe
convexity cost of the linear payment relative to its (traded) convex hedge.

3. Thisprocessis repeated for each payment of the CMS/CMT or LIBOR-in-arrears swap, and

thus for the whole instrument.

1 Anearlier version appeared in Derivatives Quarterly winter 1995.
2| would like to thank Andy Morton, Stuart Turnbull, and Alan Brazil for comments. Naturally, errors and
ommisions are my own.




The result is the convexity-adjusted PV of the instrument. The convexity adjustment can be
measured on areset-by-reset basis as a spread equa to the difference between the adjusted
mean (from the equivaent martingale measure) and the forward rate.

DESCRIPTION OF CMS/CMT AND LIBOR-IN-ARREARS

A congtant maturity Swap is avariation on astandard basis swap. One SdeisLIBOR as
usud, but the other Sde is determined using arate such asthe 5 year swap rate or the 5 year
Treasury rate. Congtant maturity swaps can use a variety of indexes. The Federd Reserve's
constant maturity Treasury (CMT) index is the most common, with constant maturity swap
(cMmS) rates being the next most common.

Asan example, take a 10 year CMS swap receiving the 10 year cMS rate and paying
standard LIBOR. Resets and payments are made quarterly. Figure 1 shows diagramatically the
payments made at year four. The pay Sdeis standard LIBOR: TheLIBOR rateis et at three
years nine months and paid in arrears at year four. Thereceive sdeisthe 10 year swap rate st
at three years nine months (the rate applies from year 3.75 through 13.75) and paid in arrears at
year four with a 30/360 day-count fraction (DC) (plus or minus a spread). The key factor is
that the cMs side pays quarterly, but using astheindex a 10 year swap rate.

Figure 1 - Paymentson cMS Swap at Year 4

(S+spd) * DC
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A cMS/CMT swap trades at a spread to floating LIBOR. The spread is aresult of:

1. Curve: For an upward doping yidd curve the cMS/cMT rate will be higher than LIBOR, and
one would receive CMS/CMT less a spread.

2. Day Count Basis: ThecmMs/CcMT sde often pays quarterly but uses a semi-annualy quoted
rate; this introduces an implicit spread.

3. Convexity: Thelinearity of the cMS/CMT payment combined with the convexity of hedge
ingruments leads to a benefit to receiving cMS/cMT which must be reflected in the spread.

The firgt two effects are straight-forward, but the convexity adjustment is more difficult to

evaluate.

A LIBOR-in-arrears swap is also avariation on a standard basis swap. Here, LIBOR IS
the index on both sides, but the LIBOR-in-arrears rate is both set and paid in arrears rather than
set up-front and paid in arrears (as for standard LIBOR). Side 1 payments are standard LIBOR
(plus a spread) set up-front and paid in arrears. To make things concrete, say one agreesto a
year swap (on annual LIBOR) paying LIBOR-in-arrears and receiving LIBOR. Focus for now on

just the last payment, at year 5. The payments would be as shown in figure 2.

Figure 2 - Payments on LIBOR-in-arrears Swap at Year 5

(L4+s) * AD/360
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LIBOR-in-arrears side
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L5*AD/360

At year 5onereceives (L,+5)AD/360, whereitalics denote arandom variable. Thisisyear 4
LIBOR st up-front but paid in arrears. At year 5 one pays LIBOR-in-arrears (set and paid in

arrears): Ls XAD/360, where Lz isthe oneyear LIBOR rate set at year 5.

USING CMSCMT SWAPS
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Interms of Sze, the cMT market islarger than cMs. The primary reason isthe liquidity
and depth of the Treasury market: Treasuries provide a benchmark against which many trades
are measured and off which many insruments are priced. Three examples of usng CMT Swaps
should suffice to show some of their importance.

The first example concerns floating rate bonds indexed to cMT. An investor who buys
acMmT floater can use a swap to synthetically replicate a LIBOR floater. Many mortgage-backed
CcMO (collaterdized mortgage obligation) floating rate tranches use cMT as the floating rate
index. Many investors, however, fund at LIBOR (or a spread to LIBOR) and so may wish to
receive LIBOR ingtead of CMT. By entering into a swap where the investor payscMT and
receives LIBOR, theinvestor can buy acmT floater but receive LIBOR. Recognizing the effect of
convexity in the CMT index isimportant both in vauing the relative price of the origind cmT
floater and in evauating the CMT/LIBOR swap. Convexity effects raise the vaue of recaiving the
CMT index rddiveto receiving LIBOR. This meansthat afloating bond on which one receives
CMT isactudly more vauable than indicated by Smply pricing off the forward curve (with no
convexity adjustment). On the swap side, the swap to pay cMT and receive LIBOR will have the
convexity effect priced in; the cMT payment will generdly be lower than that implied by the
forward curve (again with no convexity adjustment).

The second example, aso from the mortgage backed market, concerns CMT inverse
floaters. The coupon on acMT inverse might be 12% lessthe cMT index, with afloor of 0%.
An investor wishing to avoid the coupon risk (that the coupon fdls asthe CMT rate rises) can
use acombination of acMT swap and standard interest rate swaps convert the inverse floater to
aLIBOR floater. (A cMT cap could aso be sold, which would monetize the value of the coupon
floor.) Once again, the convexity effect entersinto the vauation of the origind inverse floater:
the true vaue of paying cMT is lower than the vaue implied by the forward curve (without
adjusting for convexity). In other words, the true vaue of the inverse floater is less than that
implied by pricing the cMT index off the forward curve (ignoring the convexity adjusment).

Thethird exampleisusng cMs/cMT swaps for taking positions dong the yied curve.
Receaving the cMs or cMT index on aswap will benefit from the yidd curve remaining steeper

than implied by the forward curve; i.e. it will dlow the investor to take a view on the shape of
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theyied curve. If thecMsor CMT rate remains above that implied by the forward curve, and
investor receiving the index will benefit. The soread on the swap will pricein the stegpness of
the forward curve, but will aso price the vaue of convexity. Receiving the cMSor CMT index
has vaue reative to buying forward swaps or bonds. Properly pricing the convexity effect is
important in evauating the merits of usng acMS/CMT swap to implement a curve view.

HOW CONVEXITY ENTERS

Consider again figure 1, asingle reset on the cMsleg of aswap receiving the 10 year
cMsrate. If the cmsrate changes by 1bp the profit or lossis 1¢.3 To hedge this, one would
receive fixed on $14.39 notiona of a 10 year swap: when the 10 year swap rate changes by
1bp the profit or losswould also be 1¢.

The convexity adjustment arises because the cMYCMT payment islinear in the index
while the hedge, a standard swap, is convex. Although the hedge matches when the changeis
only 1bp, convexity enters when the changeis larger than 1bp. If the cMSsindex rises by 100bp
the profit on thecmslegis$1. The hedging swap, however, would lose $0.96. If thecms
index falls by 100bp the loss on the cM s leg is $1 while the profit on the swap would be $1.05.
Figure 3 shows the hedge mismatch graphically.

Using a standard swap is not a perfect hedge for aCMS swap. The best onecandois
to receive fixed on aforward 10 year swap in arisk-weighted amount. The vaue as of the
reset date (forward value or FV) for the 10 year swap can be written as:

FV(Si0 5 S10)

where
S,p = fixed coupon of forward swap (fixed at the time the hedge is put in
place, but initidly set at the forward par swap rate)
S;o = par swap yield at forward date (random as of today) .

The hedge ratio (the notiond amount of the forward swap) is determined by setting the firgt
derivative of the forward swap (evauated at the forward swap rate, shown on the left-hand-
gde) equd to the derivative of the linear cMs payment (shown on the right-hand-side):

TRV(S10;S10) /1510 = TS5/ T1S)

3 This assumes aflat 7.5%sab curve and anotional of $100 on the cMSswap.
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Note, however, that the hedge is convex (has a non-zero second derivative) while the linear
CMS payment is not convex (it islinear and has azero second derivetive).

Figure 3 shows the net profit and loss of a portfolio of receiving the cmsrate and
hedging by receiving fixed on astandard swap. The profit from this Srategy is aways non-
negdive it isimpossble to lose money by recaiving the cM s rate and hedging with a sandard
swvap. Given thet there are few (if any) free lunchesin the financid markets, thisisunlikely. The
result isthat one receivesthe cMsrate | ess a spread (over-and-above the spread resulting from

the shape of the curve and day basis). This spread is the convexity spread.

Figure 3 - Profit & Loss on Portfolio: Recelving cMS, Receive Fixed on Swap
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SIZE OF CONVEXITY COST - CMS EXAMPLE

As an example of the size of the convexity adjustment, consider a 10 year swap against
10 year cMs. For the last quarterly reset, in 9.75 years with payment in 10 years, the
convexity spread would be about 57bp or 6.8bp up-front cost. For the whole swap the spread
resulting from convexity (over and above any pread resulting from dope of the curve and day
basis) would be about 25bp.
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The cost imposed by the convexity of hedges relative to the linearity of the payment can
belarge. The costislarger
1. Thefurther out isthe payment - e.g. the convexity cost of areset in 10 yearsis greater than
the cost of areset in one year
2. Thelarger the duration of the underlying hedge insrument - e.g. the cost islarger for
payments againgt 10 year CMS than one year CMS
3. The higher the volatility of the forward yield of the underlying hedge instrument.
Figure 4 shows the effect of time to payment, duration of the underlying hedge insrument, and
volatility of the forward yied.

Figure 4 - Effect of Time to Payment, Duration, an Voltility.
Single Quarterly Payment, 7.5% Forward Curve

Spread(bp) Up-front
cost(bp)
BASE CASE 57 6.8
Reset in 9.75yrs, payment in 10yrs
Index = 10yr CMSrate
Volatility = 15%
Reset in 1 yr, payment in 1.25yrs 5 12
All else asin base case
Index = 1yr CMSrate 6 0.8
All else asin base case
\olatility = 10% 24 29
All else asin base case

INTRODUCTION TO EQUIVALENT MARTINGALE APPROACH

It is clear that the hedge to offset the linear cM S payment is codlly (relative to the linear
payment). In effect, one ends up paying more than the implied forward rate on the cMsleg
because of volatility in the swap rate. This convexity cost should enter into the pricing of the
lineer cM s payment. The problem isto quantify the convexity cos.

There are two solutions which immediately cometo mind. The firg isto teke aterm-
Structure modd that produces an arbitrage-free distribution of swap rates as of each payment
date (amodd such as Heath, Jarrow, and Morton (1992) or Black, Derman, and Toy (1990))
and discount the linear cM s payments back using the modd. Thiswill, by necessity, vdue the
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implicit cost of the convexity (or lack of it) in the cMs payment. The only draw-back of this
method is the numericad complexity of cdibrating the modd and vauing the payment usng a
tree, lattice, or monte-carlo method.

The second approach, and that discussed here, isto find the equivaent martingae
measure that makes the expected vaue of the forward swap equd to the traded price of the
forward swap, and then take the expectation of the CMS payment over thismeasure. Although
this sounds complicated, it is actudly rather straight-forward.#

EQUIVALENT MARTINGALE APPROACH - PAYMENT UP FRONT
Assume to start with that the reset and payment are both up front, so that the rate reset
a 3. 75 yearsisaso paid a 3.75 years.®> Then the linear cMs payment will be hedged with a
3.75 year forward 10 year swap. The first step isto value the hedging swap under the
equivaent martingale measure. Using a pure discount (zero) bond maturing at year 3.75 as
numeraire, one can show there exists a measure such that the time-t vaue of the forward bond
isamatingde. Thatis,
FV(S)p; curve) , Bs7s(t)
isamartingde. By thefact that FV, B isamartingde,
«y FV(Sy ; curvey) , B3 75(0) = Bl FV(S;p; curve), Bs7s(t) ]
that is, the expectation over the martingae measure is equa to today’s vaue. If we choose
t=3.75 then B; 5 (3.75) = 1. Thus equation (1) implies that:
@ FV(Sy ; curves) = PV (forward swap today)
DF3 75 o[ FV(S;p ; curves 7) |
=0
where DF; ,5= B; +5(0) isthe discount factor to year 3.75 and E, denotestaking the

expectation over the appropriate martingale measure.

4 |t should also be noted that although this approach solves the problem by aslightly different route than
using afull term-structure model, the theoretical foundation isthe same. Thus, given similar distributional
assumptions, one should arrive at the same answer using either approach.

5 For astandard cMSCMT swap the payment is actually made in arrears. This adds a complication to the
calculation of the convexity adjustment, which is discussed in detail below.
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USING THE PAR SWAP RATE INSTEAD OF THE CURVE
Instead of writing the forward PV as afunction of the curve we can write it as afunction
of asingle variable, the (random) par swap rate a year 3.75, S
FV(So: Sio) -
That is, writethe PV as.

(€)) FV(Sio; Si0) = [S1oXDCy ], [(1+5,00C))]
+ [S;pXDC, ], [(1+5,0DC))(1+5,00C,)] + ...
+ [100+ S, XDC ], [(1+5,0C,)%1+S,;0C)] - 100

where
DC,; = day count fraction for period i.

Thisis amply discounting the fixed cash flows (including the notiond principd) by the
aopropriately defined yied-to-maturity. When thisyied-to-maturity is equa to the forward par
Swap rate, this gives the same vaue as off the forward curve (i.e. zero). The random variation
in the forward curve as of year 3.75 is represented by the variation in the (random) par swap
rate S;p, and trandated to variationsin the price through equation (3).6

Now the expectation over the equivaent martingale measure can be written as.

4 PV (fwd swap) = DF3 75 XEq [FV(S0;S10) ] -

LOG-NORMAL SWAPRATE

The discussion so far applies equaly to any assumed digtribution for the future par swep
rate. For practica application one has to make a specific assumption about the distribution of
rates. Often practitioners assume that yields are log-normdly distributed. Among others, this
assumption has the advantages that
1. Ratesreman pogdtive
2. It hasmore empirical support than the dternative of assuming normd rates (see Coleman,

Fisher, Ibbotson (1989)).

6Assuming that the future random swap rate islog-normally distributed would not be the same as assuming,
for examplein aBlack-Derman-Toy model, that future short rates are log-normally distributed. It is, however,
very close.
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When the random par swap rate, S, , islog-normaly distributed then finding the equivaent
martingale measure meansfinding themean, S,,, such that

¥

®) AFV(S10:8,,)9(S,;Sms , T)AS,, = FV(S,;curve) = 0

where
dSi0; Sn, S, T) =log-norma density function with mean S, standard
deviation s, andtimetoresat T
= exp[-(INSyo - INSy + S2T/2)? 1 25°T 1/ Q2ps>T)
S, = mean of the distribution (must be solved for to satisy 5)
s = gandard deviation (per unit time) of the random swap rate
T = timetothereset .

VALUATION OF THE LINEAR CMS PAYMENT
Once we have the equivdent martingale measure, we can use this measure to value the
linear cCMS payment. Thisgives
(6) PV(linear cMsupfront) = DF; ;5 X4 [ DC xS,y ] = DF; 75 XDC xS,
where DC isthe day count gpplied to the payment. We could aso define a“convexity
soread’: s=S,,- S,y and apply it to the forward rate. Thiswould give:
6) PV(linear cmsup front) = DF5 ;5 XDC XS5+ 9) .

CALCULATING THE ADJUSTED MEAN - QUADRATIC APPROXIMATION

Tofind S,, onemust solve equetion (5) for S,,. Theintegrd must be evauated
numericaly. Theis, however, a piece-wise quadratic approximation which alows quick
evauation for the log-normally distributed case. Start by writing the forward value (for receiving
fixed) as a portfolio of long afixed rate bond and short afloating rate bond:
) FV(S,y;Yy) =PV (bond coup = S, , discount rate = y) - 100 .
Then apply a quadratic Taylor series goproximation to the price as afunction of yied. Sincethe
convexity of abond issmdl, this gpoproximation is good over alarge range of yidds. The
goproximation is
(8) PY) = Pe + Py Xy, -yl + Py, -y12/2

where
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price of bond at the expangion point
firgt derivative (risk) at expangon point
= second derivative (convexity) at expansion point

I:)X
Px
P

The reason for using this piece-wise quadratic isthat it is quick to evauate the integral
over the quadratic. Theintegral of one piece of the quadratic (from zeroto y, ) is

© P gW)dy + PeC (v, - Vgy)dy + P (212 vy, +y*12)gy)dy .

Thisis not too difficult, and the result comesto

(10)PF (-d,) + PEAY,F (-d,) - y,F(-d,)] + P®{y2F(-d,) +y%e TF (d,)] /2
- POY,Y,F (-dy)

where
T = timeto reset (in years)
y, = Yyidd a expanson point
Y = adjusted mean of yield distribution
s = annudized voldility

4 = m(y, 1y,)+s’T/2
1 S'\/T

In generd this gpproximation will not be adequate over the whole range of y=(0,¥).
Multiple expangion points must be used, each resulting in aset of terms such asin (10). These
terms can be pieced together and evauated much faster than the origina numerica integration.
In particular, the root-finding necessary to solvefor S, ismuch faster than when evauating
the integrd by standard numerical integration.

CMSPAYMENT -in Arrears

Inanactud cMSCMT swap, the payment is made in arrears, by one quarter or one
half-year. Thiscomplicates the problem relative to payment being made at the reset date (up
front). If payment is made up front, the value today is smply the expected vaue of the linear
payment, i.e. the adjusted mean as given in equation (6) above. When the payment ismade in
arrears, the value must be discounted from payment date back to reset date at the (random)
LIBOR rate, then from reset date to today using the discount bond:
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(12) PV(linear cMsin arrears) = DF; 75 XDC XEq [ Sy / (1+DCyrk375)]

where
Sio = (random) 10 year swap rate, reset at year 3.75
Ls7s = (random) LIBOR rate reset at year 3.75, for 3.75 to 4 years
DC = day count fraction for cMS payment
DC, = day count fraction for LIBOR from reset to payment date.

In other words, the expectation must be taken over the joint distribution of the swep rate and
the LIBOR rate. This can be done asfollows.

1. Cdculate the adjusted mean for the swep rate, S, as discussed above.

2. Cdculate the adjusted mean for the LIBOR rate, in the same manner.

3. Approximate the zero bond P(Lz75)=1/(1+DC_ % 375) by apiece-wise quadratic in the
manner discussed above.

4. Cdculatethe vaue of theintegral B, [ ;¢ *P(Ls7s)]. Using the piece-wise quadratic
approximation to P(Lz75) will givetermssuch as S, k3 75. Because S0 and Ls7s are
lognormd, their product will aso be lognormd.”

Because the convexity of a quarterly or semi-annua LIBOR payment will be very smdl, itis
generdly possible to use a sngle quadratic term to gpproximate P(Ls7s).8 Taking a Taylor
series expangon around the forward rate gives:

P(L) » P+ PpfLs- L) + P'ofL? - 2LL + L2)/2

where
P: = zero evduated at the forward rate
= 1/(1+DC.%y)
P: = fird derivative evauated at forward rate
P"s = second derivative (convexity) evauated at forward rate

The vdue of the CMS payment & reset is then:

Sio PLazs) » S;oPr+ PrX Sioke- Siok) + P'r¥ Sioks - Sio2LL + S,0%%)/2 .
Taking the expectation over the equivaent martingade measure gives.
(12) B[ Sig*P(Lazs)] » SyPr+ SpxPi ks - Lme™") + S P KLf - 2LLme "

+ LmZe(s,,2+2rss T )/2

7 With theinclusion of the LIBOR rate, both the volatility of the LIBOR rate and the correl ation between the
swap and LIBOR rate will enter.

8 One can use the third derivative to estimate the error of the quadratic approximation. For a semi-annual
payment with rates at 8%, rates would have to move about 2,000bp for the approximation error in the
quadratic to riseto 0.1%. For areset at 10 years, with annual volatility at 20%, arise of 2,000bp isarise of
about 2 standard deviations; i.e. far out in the probability distribution.
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Using the same quadratic approximation, the adjusted LIBOR mean L, can be caculated asthe
solution to the quadratic equation:
L2 X' €% 712 - Ly Pt + Pks) + PP /2 +Pik = 0 .
Equation (12) can aso be written as.
(13) Eo[Sio*P(Lszs)] » P8 X 1+ PiXli- Lye™T) [ P+ P AL - 2L e "
+ Ly2e 2500 2P

where
s = voldility of forward swep rate

s, = volatility of forward LIBOR rate
r = correation between forward rates .

The advantage of writing it in thisform isthat the PV is expressed as an adjusted rate or
certainty equivaent cash flow multiplied by a discount factor from the forward curve. In other
words, the final convexity adjusted rate can be discounted back directly using the forward
curve. The net convexity adjustment (including the effect of payment in arrears) can aso be
expressed as a spread to the forward rate:

(14) S =Sk 1+Pifli- Lne™>>T) / P+ P L7 - 2Lilme"®"

+ LmZe(sf+2rss,)T )/pr] _ SILO

LIBOR-IN-ARREARS ADJUSTMENT

Theideafor LIBOR-in-arrearsis very much the same, but without the problem of
payment in arrears. Referring back to figure 2 where an annud LIBOR-in-arrears payment of L
xXAD/360 ismade at year 5, the hedge is astandard FRA which pays Ls XAD/360 , (1+Lg X
AD/360) at year 5. In other words, the present value of the (traded) 5 into 6 year FRA is

(15 PV(FRA) = DFg X(y5 - 1)/(1+ys) = DFg X 1-(1+1)/(1+ys) ],

where
DF5; = Discount factor for fixed cash flows occurring a year 5
ys = today'sforward rate from year 5 to year 6 (adjusted for day count; i.e.
Ys = L XAD/360)
r = agreed (fixed) FRA rate, adjusted for day count.
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Alternatively, the PV can be thought of as the expectation (over the equivalent

martingale measure) of the random LIBOR as of year 5:

(16) PV(FRA) = DFgxEq [ (Y5 - NI(1+ys) | = DFs XEq[1- (1+1)/(1+ys) |,

where
Ys = random LIBOR (as of year 5) from year 5 to year 6, adjusted for day
count

Eq [ = expectation taken over the equivaent martingale measure.

Once one has the adjusted mean one can calculate aspread s=Y,, - y; and apply it to the
forward rate; i.e. use the adjusted mean instead of the forward rate as the projected payment:

PV(linear LIBOR) = DFg xEq[Ys] = DFs %y, = DFgX(y; +5) .

EXAMPLE OF CMS SWAP

Figure 5 shows the implied forward rates and adjusted mean rates for a 10 year swap
againg 10 year cM S, assuming annua payments, aflat 7.5%ab forward rate, and 15%
voldility.® With no convexity adjustment, the break-even fixed side rate would be 7.5%, since
the forward curveisflat. At a15% volatility, however, the convexity adjustment increases the
bresk-even rate to 7.72%; i.e. by 19bp. In other words, a swap would be LIBOR flat versus
cMsless 19bp (in this case the effect of the curve and the day count basis are both zero). 10

9 Most cMT/cMSswaps are quarterly payments and resets. Annual payments and resets are used here to
simplify the example. Note, however, that the effect of payment in arrearsis larger here than would be the
case for quarterly payments.
101t isworth noting, in passing, that Brotherton-Ratcliffe and 1ben put forward an approximation for the
convexity spread:

S=r2xs2 XT xP" [ (2 XP)

where

s = convexity adjustment (spread in percent, i.e. 0.01 is 1bp)

r = forward rate (in percent, asin 8.0)

s =volatility (in decimal, asin 0.15)

T =timeto reset (payment) datein years

P = first derivative of pricew.r.t. yield
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Figure 5 - Adjusted Mean Rates for Annual Resets Againgt 10 Year cMs, 7.5%ab curve,

15% Voltility
Reset date 0 1 2 3 4 5 6 7 8 9
Adjusted rate 7500 755 759 764 769 774 779 784 789 7.9
Convx sprd (bp) 00 4.6 94 141 190, 239 289 339 391 4442
Payment date 1 2 3 4 5 6 7] 8 9 10
PV of sprd (bp) 0.0 40 75 106 132 155 174 190, 204{ 215
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P" = second derivative of pricew.r.t. yield
They arrive at this approximation by applying a heuristic argument to the convexity cost for CM'S swaps.
This approximation is reasonably good but does not take into account the payment in arrears. For the
example from figure 5, their approximation gives a spread 5.8bp for the year 1 reset versus 4.6bp in the table,
and 52.0 for the year 9 reset versus 44.2 in the table. Using the equivalent martingal e approach the reset at
year nine with payment up-front would be 56.3 and with payment one quarter in arrears would be 53.0.
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